Elastic-Job-Lite开发介绍
概述
Elastic-Job是一个分布式调度解决方案,定位为轻量级无中心化解决方案,使用jar包的形式提供分布式任务的协调服务,外部依赖仅Zookeeper。
基本概念
分片概念
任务的分布式执行,需要将一个任务拆分为多个独立的任务项,然后由分布式的服务器分别执行某一个或几个分片项
具体示例:
例如:有一个遍历数据库某张表的作业,现有2台服务器。为了快速的执行作业,那么每台服务器应执行作业的50%。 为满足此需求,可将作业分成2片,每台服务器执行1片。作业遍历数据的逻辑应为:服务器A遍历ID以奇数结尾的数据;服务器B遍历ID以偶数结尾的数据。 如果分成10片,则作业遍历数据的逻辑应为:每片分到的分片项应为ID%10,而服务器A被分配到分片项0,1,2,3,4;服务器B被分配到分片项5,6,7,8,9,直接的结果就是服务器A遍历ID以0-4结尾的数据;服务器B遍历ID以5-9结尾的数据。
分片项与业务处理解耦
Elastic-Job并不直接提供数据处理的功能,框架只会将分片项分配至各个运行中的作业服务器,开发者需要自行处理分片项与真实数据的对应关系。
个性化参数的适用场景
个性化参数即shardingItemParameter,可以和分片项匹配对应关系,用于将分片项的数字转换为更加可读的业务代码。
具体示例:
例如:按照地区水平拆分数据库,数据库A是北京的数据;数据库B是上海的数据;数据库C是广州的数据。 如果仅按照分片项配置,开发者需要了解0表示北京;1表示上海;2表示广州。 合理使用个性化参数可以让代码更可读,如果配置为0=北京,1=上海,2=广州,那么代码中直接使用北京,上海,广州的枚举值即可完成分片项和业务逻辑的对应关系。
Elastic-Job主要功能
- 定时任务
基于成熟的定时任务作业框架Quartz cron表达式执行定时任务。 - 作业注册中心
基于Zookeeper和其客户端Curator实现的全局作业注册控制中心。用于注册,控制和协调分布式作业执行。 - 作业分片
将一个任务分片成为多个小任务项在多服务器上同时执行。 - 弹性扩容缩容
运行中的作业服务器崩溃,或新增加n台作业服务器,作业框架将在下次作业执行前重新分片,不影响当前作业执行。 - 支持多种作业执行模式
- 失效转移
运行中的作业服务器崩溃不会导致重新分片,只会在下次作业启动时分片。启用失效转移功能可以在本次作业执行过程中,监测其他作业服务器空闲,抓取未完成的孤儿分片项执行。 - 运行时状态收集
监控作业运行时状态,统计最近一段时间处理的数据成功和失败数量,记录作业上次运行开始时间,结束时间和下次运行时间。 - 作业停止,恢复和禁用
用于操作作业启停,并可以禁止某作业运行(上线时常用)。 - 被错过执行的作业重触发
自动记录错过执行的作业,并在上次作业完成后自动触发。可参考Quartz的misfire。 - 幂等性
重复作业任务项判定,不重复执行已运行的作业任务项。由于开启幂等性需要监听作业运行状态,对瞬时反复运行的作业对性能有较大影响。 - 容错处理
作业服务器与Zookeeper服务器通信失败则立即停止作业运行,防止作业注册中心将失效的分片分项配给其他作业服务器,而当前作业服务器仍在执行任务,导致重复执行。 - 运维平台
提供运维界面,可以管理作业和注册中心。
核心理念
分布式调度
Elastic-Job-Lite并无作业调度中心节点,而是基于部署作业框架的程序在到达相应时间点时各自触发调度。
注册中心仅用于作业注册和监控信息存储。而主作业节点仅用于处理分片和清理等功能。
作业高可用
Elastic-Job-Lite提供最安全的方式执行作业。将分片总数设置为1,并使用多于1台的服务器执行作业,作业将会以1主n从的方式执行。
一旦执行作业的服务器崩溃,等待执行的服务器将会在下次作业启动时替补执行。开启失效转移功能效果更好,可以保证在本次作业执行时崩溃,备机立即启动替补执行。
最大限度利用资源
Elastic-Job-Lite也提供最灵活的方式,最大限度的提高执行作业的吞吐量。将分片项设置为大于服务器的数量,最好是大于服务器倍数的数量,作业将会合理的利用分布式资源,动态的分配分片项。
例如:3台服务器,分成10片,则分片项分配结果为服务器A=0,1,2;服务器B=3,4,5;服务器C=6,7,8,9。 如果服务器C崩溃,则分片项分配结果为服务器A=0,1,2,3,4;服务器B=5,6,7,8,9。在不丢失分片项的情况下,最大限度的利用现有资源提高吞吐量。
核心流程图
作业启动:
作业执行:
实现原理
弹性分布式实现
- 第一台服务器上线触发主服务器选举。主服务器一旦下线,则重新触发选举,选举过程中阻塞,只有主服务器选举完成,才会执行其他任务。
- 某作业服务器上线时会自动将服务器信息注册到注册中心,下线时会自动更新服务器状态。
- 主节点选举,服务器上下线,分片总数变更均更新重新分片标记。
- 定时任务触发时,如需重新分片,则通过主服务器分片,分片过程中阻塞,分片结束后才可执行任务。如分片过程中主服务器下线,则先选举主服务器,再分片。
- 通过上一项说明可知,为了维持作业运行时的稳定性,运行过程中只会标记分片状态,不会重新分片。分片仅可能发生在下次任务触发前。
- 每次分片都会按服务器IP排序,保证分片结果不会产生较大波动。
- 实现失效转移功能,在某台服务器执行完毕后主动抓取未分配的分片,并且在某台服务器下线后主动寻找可用的服务器执行任务。
数据分片
数据分片的目的在于把一个任务分散到不同的机器上运行,既可以解决单机计算能力上限的问题,也能降低部分任务失败对整体系统的影响。elastic-job并不直接提供数据处理的功能,框架只会将分片项分配至各个运行中的作业服务器(其实是Job实例,部署在一台机器上的多个Job实例也能分片),开发者需要自行处理分片项与真实数据的对应关系。框架也预置了一些分片策略:平均分配算法策略,作业名哈希值奇偶数算法策略,轮转分片策略。同时也提供了自定义分片策略的接口。
分片原理:
elastic-job的分片是通过zookeeper来实现的。分片的分片由主节点分配,如下三种情况都会触发主节点上的分片算法执行:
- 新的Job实例加入集群
- 现有的Job实例下线(如果下线的是leader节点,那么先选举然后触发分片算法的执行)
- 主节点选举
上述三种情况,会让zookeeper上leader节点的sharding节点上多出来一个necessary的临时节点,主节点每次执行Job前,都会去看一下这个节点,如果有则执行分片算法。
分片的执行结果会存储在zookeeper上,如下图,3个分片,每个分片应该由哪个Job实例来运行都已经分配好。分配的过程就是上面触发分片算法之后的操作。分配完成之后,各个Job实例就会在下次执行的时候使用上这个分配结果。
每个job实例任务触发前都会获取本任务在本实例上的分片情况(直接和上图zookeeper上instance节点比对某一个分片是否该有这个Job实例执行),然后封装成shardingContext,传递给调用任务的实际执行方法:
1 |
|
分片算法:
所有的分片策略都继承JobShardingStrategy接口。根据当前注册到ZK的实例列表和在客户端配置的分片数量来进行数据分片。最终将每个Job实例应该获得的分片数字返回出去。 方法签名如下:
1 | /** |
分片函数的触发,只会在leader选举的时候触发,也就是说只会在刚启动和leader节点离开的时候触发,并且是在leader节点上触发,而其他节点不会触发。
基于平均分配算法的分片策略
基于平均分配算法的分片策略对应的类是:AverageAllocationJobShardingStrategy。它是默认的分片策略。它的分片效果如下:如果有3个Job实例, 分成9片, 则每个Job实例分到的分片是: 1=[0,1,2], 2=[3,4,5], 3=[6,7,8].
如果有3个Job实例, 分成8片, 则每个Job实例分到的分片是: 1=[0,1,6], 2=[2,3,7], 3=[4,5].
如果有3个Job实例, 分成10片, 则个Job实例分到的分片是: 1=[0,1,2,9], 2=[3,4,5], 3=[6,7,8].作业名的哈希值奇偶数决定IP升降序算法的分片策略
这个策略的对应的类是:OdevitySortByNameJobShardingStrategy,它内部其实也是使用AverageAllocationJobShardingStrategy实现,只是在传入的节点实例顺序不一样,也就是上面接口参数的List<JobInstance>
。AverageAllocationJobShardingStrategy的缺点是一旦分片数小于Job实例数,作业将永远分配至IP地址靠前的Job实例上,导致IP地址靠后的Job实例空闲。而OdevitySortByNameJobShardingStrategy则可以根据作业名称重新分配Job实例负载。如:如果有3个Job实例,分成2片,作业名称的哈希值为奇数,则每个Job实例分到的分片是:1=[0], 2=[1], 3=[]
如果有3个Job实例,分成2片,作业名称的哈希值为偶数,则每个Job实例分到的分片是:3=[0], 2=[1], 1=[]
实现比较简单:1
2
3
4
5long jobNameHash = jobName.hashCode();
if (0 == jobNameHash % 2) {
Collections.reverse(jobInstances);
}
return averageAllocationJobShardingStrategy.sharding(jobInstances, jobName, shardingTotalCount);根据作业名的哈希值对Job实例列表进行轮转的分片策略
这个策略的对应的类是:RotateServerByNameJobShardingStrategy,和上面介绍的策略一样,内部同样是用AverageAllocationJobShardingStrategy实现,也是在传入的List<JobInstance>
列表顺序上做文章。自定义分片策略
除了可以使用上述分片策略之外,elastic-job还允许自定义分片策略。我们可以自己实现JobShardingStrategy接口,并且配置到分片方法上去。
注册中心数据结构
注册中心在定义的命名空间下,创建作业名称节点,用于区分不同作业,所以作业一旦创建则不能修改作业名称,如果修改名称将视为新的作业。作业名称节点下又包含4个数据子节点,分别是config, instances, sharding, servers和leader。
config节点
作业配置信息,以JSON格式存储
示例如下:
1 | { |
instances节点
作业运行实例信息,子节点是当前作业运行实例的主键。作业运行实例主键由作业运行服务器的IP地址和PID构成。作业运行实例主键均为临时节点,当作业实例上线时注册,下线时自动清理。注册中心监控这些节点的变化来协调分布式作业的分片以及高可用。 可在作业运行实例节点写入TRIGGER表示该实例立即执行一次。
作业分片信息,子节点是分片项序号,从零开始,至分片总数减一。分片项序号的子节点存储详细信息。每个分片项下的子节点用于控制和记录分片运行状态。节点详细信息说明:
子节点名 | 临时节点 | 描述 |
---|---|---|
instance | 否 | 执行该分片项的作业运行实例主键 |
running | 是 | 分片项正在运行的状态,仅配置monitorExecution时有效 |
failover | 是 | 如果该分片项被失效转移分配给其他作业服务器,则此节点值记录执行此分片的作业服务器IP |
misfire | 否 | 是否开启错过任务重新执行 |
disabled | 否 | 是否禁用此分片项 |
servers节点
作业服务器信息,子节点是作业服务器的IP地址。可在IP地址节点写入DISABLED表示该服务器禁用。 在新的cloud native架构下,servers节点大幅弱化,仅包含控制服务器是否可以禁用这一功能。为了更加纯粹的实现job核心,servers功能未来可能删除,控制服务器是否禁用的能力应该下放至自动化部署系统。
leader节点
作业服务器主节点信息,分为election,sharding和failover三个子节点。分别用于主节点选举,分片和失效转移处理。
leader节点是内部使用的节点,如果对作业框架原理不感兴趣,可不关注此节点。
子节点名 | 临时节点 | 描述 |
---|---|---|
election\instance | 是 | 主节点服务器IP地址 一旦该节点被删除将会触发重新选举 重新选举的过程中一切主节点相关的操作都将阻塞 |
election\latch | 否 | 主节点选举的分布式锁 为curator的分布式锁使用 |
sharding\necessary | 否 | 是否需要重新分片的标记 如果分片总数变化,或作业服务器节点上下线或启用/禁用,以及主节点选举,会触发设置重分片标记 作业在下次执行时使用主节点重新分片,且中间不会被打断 作业执行时不会触发分片 |
sharding\processing | 是 | 主节点在分片时持有的节点 如果有此节点,所有的作业执行都将阻塞,直至分片结束 主节点分片结束或主节点崩溃会删除此临时节点 |
failover\items\分片项 | 否 | 一旦有作业崩溃,则会向此节点记录 |
当有空闲作业服务器时,会从此节点抓取需失效转移的作业项 | ||
failover\items\latch | 分配失效转移分片项时占用的分布式锁 为curator的分布式锁使用 |
快速入门
引入maven依赖
1 | <!-- 引入elastic-job-lite核心模块 --> |
SimpleJob作业开发
1 | public class SpringSimpleJob implements SimpleJob { |
SimpleJob作业配置
1 |
|
如果是新增SimpleJob类型作业,只需要做如下配置即可:
1 |
|
开发指南
环境要求
名称 | 版本 |
---|---|
Java | 请使用JDK1.7及其以上版本 |
Zookeeper | 请使用Zookeeper 3.4.6及其以上版本 |
Maven | 请使用Maven 3.0.4及其以上版本 |
作业开发
Elastic-Job提供Simple、Dataflow和Script 3种作业类型。
方法参数shardingContext包含作业配置、片和运行时信息。可通过getShardingTotalCount(), getShardingItem()等方法分别获取分片总数,运行在本作业服务器的分片序列号等。
Simple类型作业:
请参考 SimpleJob作业配置
Dataflow类型作业:
Dataflow类型用于处理数据流,需实现DataflowJob接口。该接口提供2个方法可供覆盖,分别用于抓取(fetchData)和处理(processData)数据。
1 |
|
如果是新增Dataflow类型作业,只需要做如下配置即可:
1 |
|
- 可通过DataflowJobConfiguration配置是否流式处理。
- 流式处理数据只有fetchData方法的返回值为null或集合长度为空时,作业才停止抓取,否则作业将一直运行下去; 非流式处理数据则只会在每次作业执行过程中执行一次fetchData方法和processData方法,随即完成本次作业。
- 如果采用流式作业处理方式,建议processData处理数据后更新其状态,避免fetchData再次抓取到,从而使得作业永不停止。 流式数据处理参照TbSchedule设计,适用于不间歇的数据处理。
Script类型作业:
项目汇总暂无开发案例,待需要时添加
部署指南
数据库
- 执行如下建表语句即可
1 | CREATE TABLE JOB_EXECUTION_LOG ( |
应用部署
- 启动Elastic-Job-Lite指定注册中心的Zookeeper
- 运行包含Elastic-Job-Lite和业务代码的jar文件。不限与jar或war的启动方式。
运维平台和RESTFul API部署(可选)
- 解压缩elastic-job-lite-console-${version}.tar.gz并执行
bin\start.sh
。 - 打开浏览器访问http://localhost:8899/即可访问控制台。8899为默认端口号,可通过启动脚本输入-p自定义端口号
- 访问RESTFul API方法同控制台。
- elastic-job-lite-console-${version}.tar.gz可通过mvn install编译获取。